New Active Thermal By-Stander Effect Article

Side Effects, Complications of Various Lasers, Light Devices

New Active Thermal By-Stander Effect Article

PostPosted by DCNGA » Tue Apr 05, 2011 9:53 pm

A member supplied me with this link. This is not specifically talking about cosmetic laser procedures but feel it has application in that circumstance as well: ... ander.html

Active thermal bystander effect: Killing at a distance

Bystander effect is a well known social psychological phenomenon, in which people witness an incident without getting involved, and are affected in some way. For example, they may suffer “post-traumatic stress”. On a biological cellular level, the definition of a bystander effect is similar but more precise. Bystander cells which are not directly harmed can suffer severe damage or even be killed. This remote killing was discovered approximately 10 years ago in radiation research where distant non-irradiated cells exhibited a stress response similar to the irradiated cells. Clearly, there are “signals” passed through the medium, from the irradiated to the non-irradiated cells. We recently discovered that even minor heating can trigger a similar response. We named this heat induced phenomenon - Active Thermal Bystander Effect (ATBE) (Purschke, et al. 2009). Briefly, heat-exposed cells cause DNA damage and programmed cell death (apoptosis) in non-heated surrounding cells without any heat exposure or direct cell-to-cell contact. This results in a loss of viability of up to 10% in these bystander cells. The ATBE is triggered in temperature ranges of 46-50ºC where at least 50% of the heated cells are still viable to generate the bystander signal. This implies an active process, since the ATBE seems to require that living targeted cells must generate the bystander signal. The ATBE is a general phenomenon that appears in different cell lines but it more pronounced in fast dividing cancer cell lines. Our current focus is to identify the ATBE pathway and the mediators involved. Our initial data suggests that radical oxygen species (ROS) are involved in the ATBE pathway. The ROS levels are increased in the heat-exposed as well as in the bystander cells. In addition, the extracellular medium also shows an increased ROS level 1 h after heat-exposure.

ATBE has the potential for helping reduce burn injury, and for clinical applications. Developing that potential depends on our understanding of the mechanisms. In theory, ATBE could be used to sensitize a tumor, or to make the surrounding normal tissue more resistant by either applying or by suppressing the mediator. It also might be of clinical relevance for acute burn trauma, hyperthermic treatments, and distant tissue damage after large area burns and heat stress.

"It is a good thing to learn caution from the misfortunes of others."

"If you wish to succeed in life, make perseverance your bosom friend, experience your wise counselor, caution your elder brother, and hope your guardian genius."
User avatar
Posts: 5367
Joined: Fri Jun 18, 2010 3:16 pm
Location: US

Return to Side Effects, Complications

Who is online

Users browsing this forum: No registered users and 0 guests